In this episode, Dr. Derek Feng drops by to chat about a recent paper on a divide-and-conquer approach (Merged-Averaged Classifiers via Hashing) to massive classification problems. In part 1 (of 2 episodes), we describe the general problem solved by and strategy taken by MACH, wherein the original large classification problem is broken down into smaller-sized classification problems. Next week in the second episode, we talk about more technical details of how the division of labor works, and why it works.